Wnt/β-catenin pathway in the prefrontal cortex is required for cocaine-induced neuroadaptations

Santiago Cuesta¹ ², **Maria J. Severin**³, **Jorgelina Batuecas**³, **Silvana B. Rosso**¹ & **Alejandra M. Pacchioni**¹ ³

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina¹, Douglas Mental Health University Institute, Canada² and Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Argentina³

ABSTRACT

Behavioral sensitization is a progressive and enduring enhancement of the motor stimulant effects elicited by repeated administration of drugs of abuse. It can be divided into two distinct temporal and anatomical domains, termed initiation and expression, which are characterized by specific molecular and neurochemical changes. This study examines the role of the Wnt canonical pathway mediating the induction of cocaine sensitization. We found that β-catenin levels in the prefrontal cortex (PFC), amygdala (Amyg) and dorsal striatum (CPu) are decreased in animals that show sensitization. Accordingly, GSK3β activity levels are increased in the same areas. Moreover, β-catenin levels in nuclear fraction, mRNA expression of Axin2 and Wnt7b are decreased in the PFC of sensitized animals. Then, in order to demonstrate that changes in the PFC are crucial for initiation of sensitization, we either rescue β-catenin levels with a systemic treatment of a GSK3β inhibitor (Lithium Chloride) or inhibit Wnt/β-catenin pathway with an intracerebral infusion of Sulindac before each cocaine injection. As expected, rescuing β-catenin levels in the PFC as well as CPu and Amyg blocks cocaine-induced sensitization, while decreasing β-catenin levels exclusively in the PFC exacerbates it. Therefore, our results demonstrate a new role for the Wnt/β-catenin pathway as a required neuroadaptation in inducing behavioral sensitization.

Keywords cocaine neuroadaptations, prefrontal cortex, sensitization, Wnt canonical pathway.

Correspondence to: Alejandra M. Pacchioni, Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (2000) Rosario, Santa Fe, Argentina. Email: pacchioni.alejandra@conicet.gov.ar

INTRODUCTION

Drug addiction is a chronic and enduring phenomenon that has been extensively investigated in the last decades. Recently, it has been described that animal models of addiction (non-contingent versus contingent drug administration) have remarkable overlap in terms of neurocircuitry as well as in the molecular changes underlying their respective behavioral responses (Steketee & Kalivas 2011).

Behavioral sensitization is a progressive and enduring enhancement of the motor stimulant effects elicited by repeated administration of psychostimulants (Stewart & Badiani 1993). The development of sensitization can be examined as two distinct temporal and anatomical domains termed initiation, or induction, and expression. Each one is characterized by specific molecular and neurochemical changes. It has been shown that initiation is associated with changes in the ventral tegmental area (VTA) and prefrontal cortex (PFC) (Schenk & Snow 1994; Tschenkentke & Schmidt 1998; Beyer & Steketee 1999; Li et al. 1999), while expression is linked to changes in the nucleus accumbens (NAcc) (Pierce et al. 1996; Boudreau & Wolf 2005). A great deal of evidence shows that changes in synaptic plasticity underlie both initiation and expression (Vanderschuren & Kalivas 2000; Thomas, Kalivas, & Shaham 2008; Steketee & Kalivas 2011). The initiation of sensitization has been shown to be disrupted by Ibotenic acid lesions in both prelimbic and infralimbic regions of the PFC (Li et al. 1999). Moreover, several studies have suggested that cocaine induces a functional decrease of D2R in the PFC...
that would serve to enhance excitatory transmission to subcortical regions (Williams & Steketee 2005; Nogueira, Kalivas, & Lavin 2006; Kroener & Lavin 2010; Liu & Steketee 2011). Together, this evidence has revealed an interaction between dopaminergic and glutamatergic neurotransmission underlying cocaine-induced sensitization.

In the present study, we used a noncontingent drug-administration paradigm, behavioral sensitization, to model addiction-like behavioral responses in order to investigate the role of Wnt factors pathways. Wnt factors signal in axon pathfinding, dendritic development and synapse assembly in both the central and peripheral nervous systems. Wnts also modulate the basal synaptic transmission, and the structural and functional plasticity of synapses in the central nervous system (Salinas 2012). In the past decade, mounting evidence has suggested a link between dysfunction of Wnt signaling and neurological disorders such as Alzheimer’s disease, bipolar disorder and schizophrenia (De Ferrari & Inestrosa 2000; Kozlovsky, Belmaker, & Agam 2002). For instance, Alimohamad et al. (2005a) showed that amphetamine increases GSK3β activity and decreases β-catenin levels in the PFC and striatum, while D₂R antagonists produce the opposite effect. Despite the relevance to cocaine effects of dopamine and its receptors, little is known about the role of Wnt signaling pathways in drug addiction.

The Wnt growth factors belong to a large family of secreted proteins, which can signal through different receptors including Frizzled (Fz) (Logan & Nusse 2004) and the atypical tyrosine kinase receptors Ror2 and Ryk (Lu et al. 2004; Hayashi et al. 2009). The interaction between Wnt and Fz leads to the phosphorylation of dishevelled (Dvl, first intracellular effector). Downstream of Dvl, the Wnt pathways diverge into three branches: the canonical or Wnt/β-catenin, the planar cell polarity and the Wnt/calcium pathways (Ciani & Salinas 2005). The activation of the canonical pathway results in the phosphorylation of GSK3β (glycogen synthase kinase 3β) leading to β-catenin stabilization and subsequent entrance to the nucleus where it promotes gene expression (Logan & Nusse 2004; Metcalfe & Bienz 2011). While in the absence of Wnt, GSK3β phosphor-ylates β-catenin marking it for degradation by the proteasome (Magschak & Ressler 2012) (Fig. 5a). Wnt signaling is also regulated by the presence of a physiological antagonist: Dickkopf-1 (Dkk-1), a secreted protein that specifically blocks the canonical Wnt pathway by binding to LRP6 (Balico et al. 2001). Recently, increased Dkk-1 levels have been linked to deficits in dopaminergic transmission (Galli et al. 2014) as well as to neurodegenerative disease (Salinas 2012).

Numerous studies have suggested that regulation of GSK3β activity might be associated with cocaine-induced neuroadaptations. Not only does cocaine produce changes in GSK3β activity in the striatum, but inhibitors of GSK3β, both targeted (e.g. SB 216763) and non-selective (e.g. valproate or LiCl), prevent cocaine-induced sensitization (Perrine, Miller, & Unterwald 2008; Miller, Tallarida, & Unterwald 2009; Miller et al. 2014). However, none of these works have established a relationship between cocaine, GSK3β and the Wnt canonical pathway. Therefore, our main goal was to evaluate whether the Wnt canonical pathway is involved in cocaine-induced neuroadaptations such as the induction of behavioral sensitization. In the present study, we combined molecular and behavioral studies with pharmacological strategies in order to evaluate the relevance of the Wnt/β-catenin pathway for cocaine-induced behavioral sensitization.

MATERIALS AND METHODS

Experimental subjects

Male Wistar rats (250–330 g) were purchased from the Vivarium of the Facultad de Ciencias Bioquímicas y Farmacéuticas (Universidad Nacional de Rosario, Argentina). Rats were group housed in the colony room for at least 7 days before experimental tests started, with food and water ad libitum. All experiments were conducted during the light period of a 12-h light/dark cycle and were completed in accordance with the guidelines established by the Institutional Animal Care and Use Committee at the Facultad de Ciencias Bioquímicas y Farmacéuticas—UNR.

Drugs

Cocaine hydrochloride was purchased from Droguería Saporiti (Buenos Aires, Argentina), while lithium chloride (LiCl) and Sulindac were obtained from Sigma (St. Louis, MO). Cocaine and LiCl were dissolved in saline, while Sulindac was in (2-hydroxypropyl)β-cyclodextrin (5 percent w/v).

Behavioral tests

Motor activity

The testing apparatus consisted of eight acrylic boxes (43 x 43 x 30 cm) equipped with eight infrared photocell beams located 3 cm above the floor. Interruption of any beam resulted in a photocell count. Locomotor activity was recorded during 1-h habituation and the 2 h immediately after the injection. The apparatus and its software were developed by Laboratorio de Investigación Aplicada y Desarrollo, Facultad de Ciencias Exactas, Físicas y Naturales (Universidad Nacional de Córdoba, Argentina).
Cocaine behavioral sensitization paradigm

The sensitization paradigm consisted of seven daily injections (2 × 15 mg/kg i.p., 5 × 30 mg/kg i.p.) and had been previously used to describe a variety of cocaine-induced neuroadaptations which were later confirmed by cocaine self-administration (Kalivas & Duffy 1993; Pierce et al. 1996; Boudreau & Wolf 2005; Boudreau et al. 2007; Pacchioni et al. 2009). The motor activity was recorded after the first and last injections.

Surgical procedures

One week before the drug or saline treatment, animals were anesthetized with a ketamine (85 mg/kg i.p.)/xylazine (2.5 mg/kg i.p.) mixture, and were placed in a stereotaxic frame (Stoelting, USA). Bilateral cannulae (8 mm, 23 gauge) targeted the PFC or Caudate Putamen (CPu) according to the following coordinates (in mm): AP +2.9, L ±0.5, DV-2.0 or AP-0.2, L ± 3.0, DV-3.4, respectively (Paxinos & Watson 1997). Cannulae were secured to the skull using jeweler’s screws and dental acrylic. All animals received daily injections of Ketorolac (2 mg/kg i.p.) before anesthesia and for 3 days afterwards, and were allowed to recover for one week.

Microinjection of sulindac

An injection needle (30 gauge) was introduced into each guide cannula and extended 1.5 mm below the tip. Bilateral infusions of 5 µg/µl/side were made over 180 s, and the injectors were removed 60 s later.

Tissue preparation

Rats were euthanized 3 or 24 h after the last injection of cocaine or saline, and their brains were removed. The PFC, NAcc, Amygdala (Amyg) and CPu were dissected according to Heffner, Hartman, & Seiden (1980) and had been previously used to describe a variety of cocaine-induced neuroadaptations which were later confirmed by cocaine self-administration (Kalivas & Duffy 1993; Pierce et al. 1996; Boudreau & Wolf 2005; Boudreau et al. 2007; Pacchioni et al. 2009). The motor activity was recorded after the first and last injections.

Extraction of mRNA and RT-PCR

Fresh tissue from PFC was homogenized in TRIzol (Invitrogen, Waltham, Massachusetts) and processed according to the manufacture’s instructions. Details on cDNAs synthesis and PCR procedure can be found in the Supporting Information. Primers were selected using Primer3 free software (Rozen & Skaletsky 2000) (Table S1). PCR products were separated on 1 percent agarose gel stained with ethidium bromide and then observed under UV light. Optical densities (OD) of PCR products were measured using the Gel-Pro Plus software package and normalized to OD values from 18S. Unless specifically stated, all RT-PCR reagents were from Promega (Madison, WI).

Experimental procedures

Acute cocaine, chronic cocaine and saline treatments

Subjects were assigned to one of the three conditions: saline, acute cocaine or chronic cocaine (Fig. 1a). All animals received one injection per day for 7 days. Saline group: animals received saline (1 ml/kg i.p). Acute cocaine: rats received saline (1 ml/kg i.p) on days 1 to 6 and cocaine (15 mg/kg i.p) on day 7. Chronic cocaine: animals received 15 mg/kg cocaine (i.p) on days 1 and 7, and 30 mg/kg cocaine i.p on days 2 to 6. Locomotor activity was recorded after injection on days 1 and 7. From days 2 to 6, animals were injected in their home cages without locomotor activity recording. For the purposes of our study, we separated animals receiving chronic cocaine into sensitized and non-sensitized groups, according to their locomotor responses (Fig. 1b), where cocaine-induced sensitization was defined as a

Subcellular fractionation

In a different set of animals, brain tissue was dissected, and subcellular fractionation was performed as previously described by Pacchioni et al. (2009) with slight modifications. More information about the experimental procedure can be found in the Supporting Information (Fig. S1).

Western blotting

Protein extracts coming from total homogenates or nuclear fractions were heated to 80°C for 5 min with Laemmli buffer as a reducing treatment. Samples (total homogenate: 10 µg/lane; nuclear fraction: 5 µg/lane) were run in 10 percent SDS-polyacrylamide gel and transferred to nitrocellulose membrane. A secondary horseradish peroxidase-conjugated antibody (Sigma, St. Louis, MO) followed overnight incubation with primary antibody (β-catenin 1:10 000, phospho-GSK3β-Y216 1:8000, total GSK3β 1:10 000; BD BioScience, San Jose, California). Reactivity was detected using enhanced chemiluminescence (ECL) and quantified using Gel-Pro Plus software package. Total homogenates blots were also incubated with antitubulin (1:14 000; Sigma, St. Louis, MO) or total GSK3β to correct for differences in protein loading.
minimum of 20 percent increase in total activity counts on day 7 compared to day 1 (Pierce et al. 1996).

LiCl and Sulindac pretreatments

LiCl pretreatment: animals received LiCl (30 mg/kg i.p.) or Saline (1 ml/kg i.p.) injections 30 min before each saline or cocaine injection, leading to four groups: Saline/Saline, LiCl/Saline, Saline/Cocaine and LiCl/Cocaine.

Sulindac pretreatment: animals received Sulindac (5 μg/μl/ side) or Vehicle (1 μl/side) infusions 60 min before each saline or cocaine injection, leading to four groups: Vehicle/Saline, Sulindac/Saline, Vehicle/Cocaine and Sulindac/Cocaine.
Locomotor activity was recorded on days 1 and 7. Animals were not separated based on their behavioral response to cocaine.

Data analysis

Locomotor activity was analyzed using two-way or three-way analysis of variance (ANOVA) with pretreatment, treatment and time as main factors. Western blots were analyzed using either a one-way ANOVA followed by Bonferroni’s post hoc test or a Student’s t test with significance set at $p < 0.05$, depending on the number of groups under consideration.

RESULTS

Cocaine-induced sensitization leads to decreased β-catenin expression in PFC, Amyg and CPu

Behavioral sensitization to cocaine depends on a number of factors conferring individual vulnerability (Deroche-Gamondet & Piazza 2014). It has been demonstrated that many (60 percent), but not all, animals develop sensitization after cocaine exposure (Pierce et al. 1996; Boudreau & Wolf 2005; Boudreau et al. 2007). Because our behavioral results, described in Table S2, showed a similar pattern, we investigated whether molecular changes in β-catenin, the final effector of the canonical Wnt pathway, were linked to cocaine-induced behavioral sensitization. Therefore, we measured β-catenin levels as a readout for canonical Wnt signaling in brain areas relevant to addiction such as the PFC, NAcc and CPu (Metcalfe & Bienz 2011).

Repeated drug treatment induces neuronal adaptation that result in the development of behavioral sensitization. Thus, we compared the levels of β-catenin in rats that showed sensitization after a chronic cocaine treatment against control animals (acute cocaine and saline groups). Data collected 24 h after the last injection, shown in Fig. 1c, revealed that β-catenin expression was significantly decreased in the PFC and CPu of sensitized animals compared to saline animals. Moreover, no significant changes were found in β-catenin levels after acute injection in any of the studied areas compared to saline. A one-way ANOVA analysis of Fig. 1c revealed a significant effect of treatment in the PFC [F (2, 18) = 5.797; $p < 0.05$], and CPu [F (2, 19) = 8.175; $p < 0.01$]. Based on these results, Amyg tissue was collected from a different set of animals that received chronic, but not acute cocaine treatment, and developed sensitization. A simple comparison revealed a statistically significant decrease in β-catenin levels in the Amyg of sensitized animals compared to saline controls (t test, $p < 0.001$). No changes in β-catenin levels were found in the NAcc (percent) Saline: 101.70 ± 4.08. Acute cocaine: 98.38 ± 7.27. Chronic cocaine (Sensitized): 99.29 ± 8.08. Similar to 24 h, when animals were sacrificed 3 h after the last cocaine injection, β-catenin protein levels were decreased in PFC and CPu, and no changes were found in NAcc (Fig S2). This shows that cocaine-induced sensitization leads to changes in β-catenin expression specifically in the PFC, CPu and Amyg. Next, we conducted a second experiment where we included rats that did not develop sensitization (Fig. 1d). A one-way ANOVA analysis revealed a significant effect of behavioral response on β-catenin levels in the PFC [F (2, 14) = 20.69; $p < 0.0001$], Amyg [F (2, 18) = 14.97; $p < 0.0001$], and CPu [F (2, 14) = 13.94; $p < 0.0005$]. The animals that did not develop behavioral sensitization (non-sensitized group) did not show changes in the levels of β-catenin compared to saline group, suggesting no changes in the activity of the canonical Wnt pathway. In summary, β-catenin levels are associated with the development of sensitization and the particular brain area being studied. Moreover, the fact that an acute cocaine injection did not modify β-catenin expression strengthens the idea that these changes are a neuroadaptation to repeated cocaine associated with behavioral sensitization.

Cocaine-induced sensitization is associated with a functional decrease of β-catenin in the PFC

To evaluate if the changes in β-catenin levels found in total homogenates of sensitized animals were the result of a functional decrease of the Wnt canonical pathway, we compared the GSK3β activity levels in tissues of cocaine-sensitized animals and controls. Figure 2a shows the decreased GSK3β activity levels in the PFC, Amyg and CPu evaluated as the phosphorylation level of Tyrosine 216 (activator site). The simple comparison of the data in Fig. 2a revealed that GSK3β activity was significantly increased in cocaine-sensitized animals compared to saline in all tested areas (t test, $p < 0.05$). This indicates that GSK3β is significantly activated in all brain areas that had previously shown a decrease in β-catenin levels after cocaine-induced sensitization. Then, fresh brain tissue obtained from the PFC and CPu of another set of animals was submitted to subcellular fractionation and β-catenin was measured in the nuclear fraction (Fig. 2b). Our data showed that β-catenin levels were only decreased in the nuclear fraction of the PFC (t test, $p < 0.05$) but not of the CPu (t test, $p = 0.5435$). Considering that β-catenin not only is the final effector of the Wnt canonical pathway, but also has a role as a membrane protein that participates in dendritic remodeling (Clevers & Nusse 2012), we carried out an in-depth analysis by examining the expression of β-catenin in the PFC membrane fraction that showed no changes during cocaine-induced sensitization.
In line with these results, we also found, through RT-PCR, that Axin2 mRNA levels (a β-catenin-targeted gene and a general indicator of Wnt canonical pathway activity (Clevers & Nusse 2012)) was reduced in cocaine-sensitized animals compared to the control group (t test $p < 0.01$) (Fig. 2c). Thus far, the results presented here suggest that cocaine-induced sensitization is associated with a functional decrease of β-catenin in the PFC but not the CPU. More studies need to be performed in the Amyg in order to establish whether cocaine-
induced sensitization is associated with a functional decrease of β-catenin in this area.

Finally, we investigated if the functional changes in the canonical Wnt pathway found in the PFC, which point to an inhibition of the pathway, were a consequence of decreased expression of Wnt factors. We therefore examined the mRNA expression of different Wnt factors using RT-PCR (Fig. 2d). We analyzed the expression of a variety of Wnt factors, such as 3a, 5a, 7a, 7b and 8 in the PFC tissue, and we found that Wnt7b mRNA expression was significantly decreased in cocaine-sensitized animals compared to the saline (t test \(p < 0.03 \)).

Preventing β-catenin reduction with systemic lithium chloride blocks cocaine-induced behavioral sensitization

To test the hypothesis that changes in β-catenin levels were responsible for cocaine-induced sensitization, we treated animals with LiCl (30 mg/kg i.p.) or saline before each cocaine injection. LiCl is a nonspecific inhibitor of GSK3β activity, which means that given before cocaine, it would prevent cocaine-induced decrease of β-catenin levels, and therefore it would block cocaine-induced behavioral sensitization. It is important to note that the dose we administered was lower than the one previously used in the literature (e.g. LiCl 100 mg/kg (Xu et al. 2009)), and that the chosen cocaine-induced sensitization regimen was one that allowed us to study the effect of LiCl. Interestingly, we found that 30 mg/kg i.p. F3 blocked sensitization (Fig. 3a) while preventing the decrease in β-catenin levels in PFC total homogenates (Fig. 3b) as well as nuclear fraction (Fig. 3c). A two-way repeated measures ANOVA of behavioral data of Fig. 3a showed a main effect of treatment \([F (1,40) = 119.53, p < 0.0001] \), and a significant interaction between pretreatment \(\times \) treatment \(\times \) time \([F (1,40) = 13.29, p < 0.001] \). Meanwhile, a two-way ANOVA applied on β-catenin levels in PFC total homogenates revealed a significant interaction between treatment and pretreatment \([F (1,32) = 26.77, p < 0.0001] \). A similar analysis in nuclear fractions showed a significant effect of pretreatment \([F (1,30) = 17.50, p < 0.0005] \). Moreover, we found that LiCl prevented cocaine-induced β-catenin changes in the Amygdala and CPu (Fig S4) whereas in the NAcc LiCl increased β-catenin levels regardless of drug treatment. This was an expected finding suggested by previous studies showing an increase of phosphorylated GSK3β in the NAcc after LiCl (Xu et al. 2009; Xu et al. 2011) (Fig S4).

Inhibiting PFC’s Wnt canonical pathway with Sulindac develops cocaine-induced behavioral sensitization

To test whether or not β-catenin changes were necessary for cocaine-induced behavioral sensitization, we submitted animals to Sulindac infusions (Wnt canonical pathway inhibitor (Lee et al. 2009)) in the PFC or CPus before each cocaine injection. After a week of recovery, animals underwent seven daily cocaine injections. Because our previous results showed that cocaine-induced sensitization might involve an inhibition of the Wnt canonical pathway, we used a lower dose of cocaine (7 × 15 mg/kg/day) to avoid a possible behavioral ceiling effect that might have occurred if the previous cocaine regime had been used. As previously done, locomotor activity was tested for 2 h on days 1 and 7. Between days 2 and 6 of the treatment animals also received a bilateral

![Figure 3](image-url) Preventing β-catenin reduction with systemic Lithium Chloride blocks cocaine-induced behavioral sensitization. Animal were pretreated with LiCl (30 mg/kg i.p.) or saline (1 ml/kg i.p.) 30 min before each injection of cocaine or saline; and their locomotor activity was tested after first and last injection. Rats were sacrificed 24 h after last injection, their brains were dissected and β-catenin was measured in total homogenates. a) Total locomotor activity measured on day 1 and 7 showed that cocaine induced behavioral sensitization in Sal/Coc, while LiCl pretreatment blocked the initiation of cocaine sensitization. b) β-catenin levels in PFC total homogenates were significantly decreased in Sal/Coc group while LiCl pretreatment restored protein levels. c) Pretreatment with LiCl restored β-catenin levels in PFC nuclear fractions. Bars represent mean ± SEM. Number of animals (n) are represented inside each bar. † Significantly different from day 1, \(p < 0.05 \); *significantly different from all other groups, \(p < 0.05 \); † significantly different from Sal/Coc group, \(p < 0.05 \). Bonferroni post hoc test.
infusion of Sulindac (5 μg/μl/side) or Vehicle in the PFC or CPu, and stayed in their home cages until the cocaine injection. As we anticipated, we found that Sulindac infusions facilitate the development of cocaine-induced sensitization when infused in PFC (Fig. 4a), but not in CPu (Fig S5a). Despite the fact that Sulindac decreased β-catenin levels in both areas, PFC (Fig. 4b) and CPu (Fig S5b), only changes in the PFC were able to induce sensitization. It is important to point out that Sulindac only modified β-catenin levels in the area where it was administered. No changes were found in other areas such as the Amyg (Fig. 4c) or CPu (Fig. 4d) during PFC infusions; nor in the PFC (Fig S5c) or Amyg (Fig S5d) during CPu infusions. A two-way repeated measures ANOVA of behavioral data from Fig. 4a showed significant main effect of treatment [F(1,30) = 63.56, p < 0.001], and interaction between pretreatment × treatment × time [F(1,30) = 8.134, p < 0.01]. A two-way ANOVA of β-catenin levels in PFC showed significant effects of treatment [F(1,21) = 6.552, p < 0.05] and pretreatment [F(1,21) = 20.40, p < 0.0005] (Fig. 4b).

DISCUSSION

The current study proposes a new role for the Wnt/β-catenin pathway in cocaine-induced neuroadaptations underlying behavioral sensitization. Our main findings were: (1) chronic cocaine induced a decrease of β-catenin levels in the PFC, CPu and Amyg compared to saline treated animals, while no changes were found in other areas such as the Amyg (Fig. 4c) or CPu (Fig. 4d) during PFC infusions; nor in the PFC (Fig S5c) or Amyg (Fig S5d) during CPu infusions. A two-way repeated measures ANOVA of behavioral data from Fig. 4a showed significant main effect of treatment [F(1,30) = 63.56, p < 0.001], and interaction between pretreatment × treatment × time [F(1,30) = 8.134, p < 0.01]. A two-way ANOVA of β-catenin levels in PFC showed significant effects of treatment [F(1,21) = 6.552, p < 0.05] and pretreatment [F(1,21) = 20.40, p < 0.0005] (Fig. 4b).

![Figure 4](image-url) Inhibiting PFC’s Wnt canonical pathway with Sulindac develops cocaine-induced behavioral sensitization. Rats were pretreated with Sulindac (5 μg/μl/side) or Vehicle [(2-hydroxypropyl)-β-cyclodextrin] an hour before each injection on days 2 to 5 of the treatment. Locomotor activity was measured for 2 h after cocaine or saline injections on days 1 and 7. Twenty four hours after the last injection animals were sacrificed and brains were dissected in order to measure β-catenin levels in total homogenates. a) Total locomotor activity measured on day 1 and 7 showed that seven injections of 15 mg/kg i.p. of cocaine in Sal/Coc group did not induce sensitization while it did induce sensitization when a Sulindac pretreatment was given. b) β-catenin levels were measured in total homogenates of PFC, Amyg and CPu from animals infused with Sulindac in PFC and sacrificed 24 h after finishing the treatment. Bars represent Mean ± SEM. Number of animals (n) are represented inside each bar. + Significantly different from day 1 of same group, p < 0.001; *significantly different from Veh/Sal and Veh/Coc group, p < 0.05; † significantly different from Veh/Sal group, p < 0.05. Bonferroni post hoc test.

© 2016 Society for the Study of Addiction

Addiction Biology
Cocaine Wnt/β-catenin pathway

F5

In order to demonstrate that these changes in PFC are necessary for developing sensitization, we either rescued β-catenin levels with a systemic treatment of a GSK3β inhibitor (LiCl) or inhibited the Wnt/β-catenin pathway with an intracerebral infusion of Sulindac, before each cocaine injection. As expected, rescuing β-catenin levels in the PFC as well as CPU and Amyg blocked cocaine-induced sensitization, while decreasing β-catenin levels exclusively in the PFC exacerbated it. This highlights the relevance of the PFC’s Wnt canonical pathway for the initiation of cocaine-induced sensitization.

To our knowledge, this is the first time that the Wnt/β-catenin pathway is associated with cocaine-induced neuroadaptations underlying behavioral sensitization. While other groups have demonstrated that cocaine treatments induce changes in GSK3β activity, no one has connected these changes to the Wnt pathway. For instance, and in line with our results, an acute injection of cocaine induced an increase of GSK3β activity in the CPU of mice (Miller et al. 2009). These results suggest a decrease in β-catenin levels, but this was not measured by the authors. Moreover, in the same study GSK3β inhibitors administered prior to a cocaine injection reduced locomotor sensitization (Miller et al. 2009) as well as conditioned place preference (Miller et al. 2014). While we did not find any β-catenin changes in the NAcc, others found that higher levels of GSK3β activity in the rat NAcc core contributed not only to cocaine-induced hyperactivity (Kim et al. 2013) but also to the development of cocaine-induced locomotor sensitization (Xu et al. 2009). This discrepancy might be because we sampled the entire area instead of discriminating core and shell.

Repeated cocaine administration progressively enhances locomotor responses, leading to behavioral sensitization (Pierce & Kalivas 1997; Robinson & Berridge 2001). Although the role of sensitization in addiction may be debatable, data collected from sensitization studies has proven to be predictive of the neurochemical circuitry of relapse/reinstatement behaviors (Steketee & Kalivas 2011). The neurobiological basis of cocaine-induced sensitization has been extensively studied. It has been shown that sensitization is the result of a complex series of changes in dopaminergic as well as glutamatergic connections in the mesocorticobulbar pathway: the VTA and PFC seem to be important during initiation, while the NAcc seems to play a role in expression of sensitization (Pierce & Kalivas 1997; Vanderschuren & Kalivas 2000; Steketee & Kalivas 2011). Indeed, it has been shown that

Figure 5 Schematic summary of cocaine-induced neuroadaptations on Wnt canonical pathway in the PFC that underlies behavioral sensitization. a) In the absence of Wnt, GSK3β phosphorylates β-catenin marking it for degradation by the proteasome. Upon activation of the Wnt canonical pathway, GSK3β is inhibited and leads to the stabilization of β-catenin and its subsequent translocation to the nucleus where it regulates the expression of Wnt target genes such as Axin2. It has been shown that both β-catenin and Dvl—and perhaps some of the Wnt target proteins—interact with the D2R (Sutton et al. 2007; Min et al. 2011). b) Cocaine-induced behavioral sensitization leads to a functional decrease in β-catenin levels. This inhibition could be produced by the decrease in the expression of the Wnt7b mRNA, or may involve an increase in Dkk-1 release. Any of these two mechanisms would consequently lead to a decrease in Dvl and β-catenin levels. Because D2R interacts with Dvl and β-catenin, cocaine-induced inhibition in the Wnt/β-catenin pathway could result in the functional decrease in dopamine neurotransmission associated with behavioral sensitization. Dkk: Dickkopf-1; Dvl: Dishevelled; Fz: Frizzled receptor; D2: Dopamine D2-like receptor; Gi: Inhibitory G protein; AC: Adenylyl Cyclase; βcat: β-catenin, GSK3β; Glycogen synthase kinase 3β; DA: Dopamine. Black arrows: activation (filled: normal activity, thickened: increased activity, dotted: reduced activity); red blunted arrows: inhibition (filled: normal activity, thickened: increased activity, dotted: reduced activity).
lilotenic acid lesions of the PFC, which encompass both the prelimbic and infralimbic regions, disrupt the induction of sensitization to cocaine (Li et al. 1999). We focused our study on the possible role of the Wnt/β-catenin pathway in the initiation of cocaine-induced sensitization. In the PFC, we found changes in Wnt/β-catenin’s intracellular effectors and in the expression of genes regulated by β-catenin, both of which correlate with behavioral sensitization. Altogether, these changes suggested that behavioral sensitization is associated with an inhibition of Wnt/β-catenin pathway in the PFC. Furthermore, we also showed that manipulations of this pathway either by a systemic treatment (i.e. LiCl) or an intra-PFC infusion (Sulindac) changed the behavioral response as we expected. That is to say, LiCl reverses β-catenin levels and blocks sensitization while Sulindac decreases β-catenin levels and exacerbates sensitization. It is important to highlight the fact that we blocked the behavioral response with a lower dose of LiCl than the one previously used in the literature (Miller et al. 2009; Xu et al. 2009) and that we could associate the behavioral response with changes in β-catenin levels. Moreover, the intracerebral infusion of Sulindac only affected the behavior when administered in the PFC but not in CPU, while β-catenin levels were decreased after infusions in both areas. In summary, changes in Wnt/β-catenin pathway in the PFC are crucial for cocaine-induced neuroadaptations that underlie behavior, while changes in the CPU are necessary but not sufficient. Further work must be done to elucidate whether the changes found in the Amyg are necessary for sensitization.

Interestingly, a relationship between dopamine neurotransmission and intracellular effectors of the Wnt/β-catenin pathway has been shown in the past decade. For instance, amphetamine induced a decrease in β-catenin in the VTA while the opposite effect happened after a treatment with a D2R antagonist not only in the VTA but also in PFC and striatum (Alimohamad et al. 2005b,a). As a possible mechanism, Min et al. (2011) recently proposed that D2R inhibits TCF/LEF-1 dependent transcriptional activities by directly interacting with β-catenin, leading to a reduction of its distribution to the nucleus. Our own results do not support this, as we did not see an increase in β-catenin in the membrane fraction. Moreover, other groups found that antipsychotics specifically increased Dvl-3 protein levels (Alimohamad et al. 2005b; Sutton et al. 2007) and demonstrated an interaction between Dvl-3 and D2R that may explain the effect of antipsychotics on the Wnt canonical pathway (Sutton et al. 2007). Indeed, it has been shown that over-expression of Dvl is sufficient to stabilize β-catenin and increase TCF/LEF-1 mediated gene transcription (Smalley et al. 1999; Uematsu et al. 2003b, a). In line with this, we showed that repeated intra-PFC infusions of Sulindac, which inhibits Wnt/β-catenin pathway by blocking Dvl’s PDZ domain (Lee et al. 2009), enhanced cocaine-induced sensitization (Fig. 5b).

Several studies have suggested a role of the PFC in initiation of cocaine sensitization: cocaine induces a functional decrease of D2R in the PFC that would serve to enhance excitatory transmission to subcortical regions (Williams & Steketee 2005; Nogueira et al. 2006; Kroener & Lavin 2010; Liu & Steketee 2011). Therefore, it is possible that cocaine-induced inhibition in the Wnt/β-catenin pathway starts at, or upstream of, Dvl and is related to a functional decrease in dopamine neurotransmission. In fact, Galli et al. (2014) have recently demonstrated that inducible expression of Dkk-1, a physiological inhibitor of the Wnt/β-catenin pathway (Ballicco et al. 2001) in adult mice striatum decreases D1R and D2R clusters, leading to deficits in dopaminergic transmission. Hence, another possibility that needs to be tested is whether chronic cocaine decreases Wnt synthesis or increases Dkk-1 levels. However, the fact that we found significantly lower levels of Wnt7b mRNA in the PFC points out to a decrease in Wnt synthesis. Interestingly, Wnt7-Dvl signaling has been associated to presynaptic assembly and neurotransmitter release (Ahmad-Annuar et al. 2006) (Fig. 5b).

As far as we know, this is the first time that the Wnt canonical pathway is involved in cocaine-induced neuroadaptations that underlie behavioral changes. Here we described how inhibition of the Wnt/β-catenin pathway is associated with initiation of cocaine-induced behavioral sensitization. Specifically, we found decreased β-catenin levels and increased activity of GSK3β in areas such as the PFC, CPU and Amyg of sensitized animals. In addition, functional inhibition of Wnt/β-catenin pathway was demonstrated in the PFC but not in the CPU. These results suggest that only the changes found in the PFC are associated with the Wnt canonical pathway, while the changes in the CPU might be a result of the structural role of β-catenin. Accordingly, we showed that inhibition of the Wnt canonical pathway at the level of Dvl in the PFC exacerbates initiation of cocaine-induced sensitization. We therefore hypothesize that the inhibition in the Wnt/β-catenin pathway observed in the PFC of sensitized animals may be associated with a functional decrease of Dvl leading to a disconnection of D1R. Altogether, our results indicate a new role for the Wnt/β-catenin pathway in cocaine-induced neuroadaptations and highlight, once again, the importance of the PFC as a biological substrate of cocaine-induced sensitization. Because locomotor sensitization in rodents seems to share plastic mechanisms with drug addiction in humans, and correspond to aspects of drug abuse such as initiation and compulsive drug-seeking behavior (for review see Steketee & Kalivas et al. 2011).
(2011)), our findings suggest that the Wnt canonical pathway may be involved in the early stages of substance abuse. Although one must always be wary of extrapolating clinical relevance from animal data, the considerations discussed above suggest that Wnt pathways constitute a promising target for the development of a preventive treatment for addiction. Consequently, our findings may open a door to new therapeutic strategies in the treatment of cocaine addiction.

Acknowledgements

This work was funded by ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica-Argentina) grant PICT 227-2008 (SBR and AMP). The authors thank Matthew Pokinko for his comments on the manuscript. We thank Florencia Cerchiara and Patricia G. Rivera Podesta for their English technical assistance.

DISCLOSURE/CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHORS CONTRIBUTIONS

SC, SBR and AMP were responsible for the study concept and design. SC also supervised and contributed to the acquisition of data, analyzed the data and drafted the manuscript. AMP also provided critical revisions of the manuscript. MJJS and JB contributed to the acquisition of data. All authors critically reviewed the content and approved the final version for publication.

Reference

© 2016 Society for the Study of Addiction

Addiction Biology

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

Table S1 Primers were selected using the Primer3 free software (Rozen & Skaletsky), and their sequences are detailed in the table below.

Table S2 Total locomotor activity measured on first (Day 1) and last day (Day 7) of the treatment during 2 h after the injection. Acute Cocaine received Saline from day 1 to 6, and cocaine only on Day 7. As it was previously described by Pierce et al. (2007) most of the animals chronically treated with cocaine showed sensitization. In order to separate animals in sensitized and non-sensitized, the behavioral response on Day 7 should showed at least a 20 percent increase from Day 1 to define sensitization (Pierce et al.). (*Significantly different from the percent of increase of the non-sensitized animals, p < 0.005, t test.

Figure S1 Schematic diagram that described the subcellular fractionation experimental procedure.

Figure S2 Cocaine-induced sensitization leads to decreased beta-catenin expression in PFC, Amygd and CPU. 3 h after the last injection. Adult rats received either: seven saline injections (saline), saline from day 1 to 6 and cocaine on day 7 (acute cocaine), or seven daily injections of cocaine (chronic cocaine). On day 1 and 7 all rats were behaviorally tested immediately after the injection. In the chronic cocaine group, their locomotor responses on each day were compared to divide animals into Sensitized (Sens) and Non-sensitized. However, at this time point only sensitized animals were sacrificed. Levels of beta-catenin were measured in brain areas obtained from Sensitized animals sacrificed 3 h after the last injection. A-one way ANOVA analysis revealed a significant effect of treatment in the PFC [F (2, 18) = 3.702; p < 0.05], and, CPU [F (2, 19) = 8.175; p < 0.0001]. Neither chronic (sensitized) nor acute cocaine treatment produces changes in beta-catenin levels in the NAcc (percent) Saline: 99.75 ± 6.62, Acute: 102.90 ± 7.34, Chronic cocaine (Sensitized): 102.40
Figure S3 Cocaine-induced sensitization is not associated with β-catenin changes in the PFC’s membrane fraction. The PFC’s membrane fraction was obtained by subcellular fractionation of fresh tissues coming from a different set of sensitized animals where β-catenin was measured by western blot. A simple comparison between sensitized and saline animals showed that cocaine-induced sensitization produced no changes in β-catenin levels in PFC’s membrane fraction (t test, p = 0.5629). All animals were sacrificed 24 h after the last injection. Bars represent mean ± SEM. Number of animals (n) are represented inside each bar.

Figure S4 A systemic treatment with lithium chloride restored β-catenin levels in the Amyg and CPu. Animals were pretreated with LiCl (30 mg/kg i.p.) or vehicle (saline, 1 ml/kg i.p.) 30 min before each injection of cocaine or saline, and their locomotor activity was tested after first and last injection. Rats were sacrificed 24 h after last injection, their brains were dissected and β-catenin was measured in total homogenates. β-catenin levels in the Amyg and CPu total homogenates were significantly decreased in Sal/Coc group while LiCl pretreatment restores protein levels. A two-way ANOVA applied on β-catenin levels in the Amyg revealed a significant effect of pretreatment [F (1,33) = 11.07, p < 0.005] while in the CPu revealed a significant effect of the pretreatment [F(1,31) = 11.07, p < 0.005]; and treatment [F (1.31) = 13.89, p < 0.001]. Finally, LiCl treatment induced in the NAcc an increased in β-catenin levels regardless cocaine-induced sensitization. A 2 ways ANOVA revealed a significant effect of pretreatment [F(1,36) = 21.66, p < 0.0001]. Bars represent Mean ± SEM. Number of animals (n) are represented inside each bar. *Significantly different from all other groups, p < 0.05; + significantly different from Sal/Coc group, p < 0.05. Bonferroni post hoc test.

Figure S5 Inhibiting CPu’s Wnt canonical pathway with Sulindac did not induce cocaine behavioral sensitization. Rats were pretreated with Sulindac (5 μg/μl/side) or Veh an hour before each cocaine injection, on days 2 to 5 of the treatment. Locomotor activity was measured on days 1 and 7 after cocaine or saline injections. The day after the last injection, animals were sacrificed and brains were dissected. a) Total locomotor activity showed that seven injections of 15 mg/kg i.p. of cocaine did not induce sensitization regardless of the given pretreatment (Veh or Sulindac). A two-way ANOVA for repeated measures revealed a significant main effect of treatment [F(1,21) = 161.63, p < 0.001]. b) β-catenin levels in the CPu were significantly reduced in animals that received Sulindac infusions before cocaine injections. A two-way ANOVA applied on CPu’s data showed a significant effect of treatment [F(1,19) = 7.764, p < 0.05] and pretreatment [F (1.19) = 12.98, p < 0.09]. c and d) β-catenin levels did not show any changes in the PFC and Amyg, respectively. Bars represent mean ± SEM. Number of animals (n) are represented inside each bar. *Significantly different from Veh/Sal and Suli/Sal group, p < 0.05; + significantly different from Veh/Sal group, p < 0.01. Bonferroni post hoc test.

Supporting info item
Original Article

Wnt/β-catenin pathway in the prefrontal cortex is required for cocaine-induced neuroadaptations

Santiago Cuesta, Maria J. Severin, Jorgelina Batuecas, Silvana B. Rosso and Alejandra M. Pacchioni
Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to these by annotating your proofs with the necessary changes/additions.

- If you intend to annotate your proof electronically, please refer to the E-annotation guidelines.
- If you intend to annotate your proof by means of hard-copy mark-up, please use the standard proofing marks.

If manually writing corrections on your proof and returning it by fax, do not write too close to the edge of the paper. Please remember that illegible mark-ups may delay publication.

Whether you opt for hard-copy or electronic annotation of your proofs, we recommend that you provide additional clarification of answers to queries by entering your answers on the query sheet, in addition to the text mark-up.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Query</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AUTHOR: Please confirm that given names (red) and surnames/family names (green) have been identified correctly.</td>
<td>Names and surnames are correct.</td>
</tr>
<tr>
<td>Q2</td>
<td>AUTHOR: The country name Argentina has been inserted for the affiliations. Please check and correct if necessary.</td>
<td>O.K.</td>
</tr>
<tr>
<td>Q3</td>
<td>AUTHOR: Unable to identify Sponsor ID for ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica-Argentina).</td>
<td>see bellow</td>
</tr>
<tr>
<td>Q4</td>
<td>AUTHOR: Please provide a suitable figure (abstract diagram or illustration selected from the manuscript or an additional eye-catching figure) and a short ‘GTOC’ abstract (maximum 80 words or 3 sentences) summarising the key findings presented in the paper for Table of Content (TOC) entry</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>AUTHOR: Figure 5 is recommended for color online and in print. Please check.</td>
<td>accepted</td>
</tr>
<tr>
<td>Q6</td>
<td>AUTHOR: Please provide page range for Reference Salinas PC (2012).</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Q3: ANPCyT is a national agency in Argentina. The long name is correct as well as the abbreviation.
USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 7.0 or above). (Note that this document uses screenshots from Adobe Reader X)
The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/uk/reader/

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We’ve picked out some of these tools below:

1. Replace (Ins) Tool – for replacing text.

 Stripes a line through text and opens up a text box where replacement text can be entered.

 How to use it
 - Highlight a word or sentence.
 - Click on the Replace (Ins) icon in the Annotations section.
 - Type the replacement text into the blue box that appears.

2. Strikethrough (Del) Tool – for deleting text.

 Stripes a red line through text that is to be deleted.

 How to use it
 - Highlight a word or sentence.
 - Click on the Strikethrough (Del) icon in the Annotations section.

3. Add note to text Tool – for highlighting a section to be changed to bold or italic.

 Highlights text in yellow and opens up a text box where comments can be entered.

 How to use it
 - Highlight the relevant section of text.
 - Click on the Add note to text icon in the Annotations section.
 - Type instruction on what should be changed regarding the text into the yellow box that appears.

4. Add sticky note Tool – for making notes at specific points in the text.

 Marks a point in the proof where a comment needs to be highlighted.

 How to use it
 - Click on the Add sticky note icon in the Annotations section.
 - Click at the point in the proof where the comment should be inserted.
 - Type the comment into the yellow box that appears.
USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

5. **Attach File Tool** – for inserting large amounts of text or replacement figures.

 - Inserts an icon linking to the attached file in the appropriate pace in the text.

 How to use it
 - Click on the Attach File icon in the Annotations section.
 - Click on the proof to where you’d like the attached file to be linked.
 - Select the file to be attached from your computer or network.
 - Select the colour and type of icon that will appear in the proof. Click OK.

6. **Add stamp Tool** – for approving a proof if no corrections are required.

 - Inserts a selected stamp onto an appropriate place in the proof.

 How to use it
 - Click on the Add stamp icon in the Annotations section.
 - Select the stamp you want to use. (The Approved stamp is usually available directly in the menu that appears).
 - Click on the proof where you’d like the stamp to appear. (Where a proof is to be approved as it is, this would normally be on the first page).

7. **Drawing Markups Tools** – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

 - Allows shapes, lines and freeform annotations to be drawn on proofs and for comment to be made on these marks.

 How to use it
 - Click on one of the shapes in the Drawing Markups section.
 - Click on the proof at the relevant point and draw the selected shape with the cursor.
 - To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
 - Double click on the shape and type any text in the red box that appears.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: